Personalized Product Discovery: A Quantum Leap for Polish E-Commerce > 자유게시판

본문 바로가기


자유게시판

Personalized Product Discovery: A Quantum Leap for Polish E-Commerce

페이지 정보

작성자 Zane 작성일26-01-12 17:59 조회2회 댓글0건

본문

beginner-SEO-course-980x551.png

The Polish e-commerce landscape, while experiencing steady growth, is still grappling with challenges in providing truly personalized experiences for its online shoppers. While existing solutions offer basic recommendations and targeted advertising, a demonstrable advance lies in implementing personalized product discovery engines powered by advanced machine learning, specifically incorporating contextual bandit algorithms and knowledge graph integration. This approach surpasses current market capabilities by dynamically adapting to individual user behavior in real-time, understanding intricate product relationships, and proactively suggesting relevant items even when users lack specific search terms.


The Current State: A Patchwork of Inadequate Solutions

e7783812650c6ea0916c34ffc5617dbc.jpg

Presently, Polish e-commerce platforms primarily rely on a combination of the following techniques:


Rule-based recommendations: These systems use predefined rules based on simple heuristics, such as "customers who bought X also bought Y." While easy to implement, they lack adaptability and fail to capture nuanced user preferences. They are often rigid and prone to recommending irrelevant items, leading to user frustration. Examples include suggesting winter coats to customers browsing swimwear due to seasonal co-occurrence.
Collaborative filtering: This approach recommends items based on the purchase history of similar users. While more sophisticated than rule-based systems, it suffers from the "cold start problem" (difficulty recommending items to new users with limited purchase history) and may reinforce existing biases in purchase patterns. Furthermore, it struggles to handle niche products or rapidly changing trends. An example would be recommending a popular video game to all users interested in gaming, regardless of their specific genre preferences.
Content-based filtering: This method recommends items similar to those the user has previously interacted with, based on product descriptions and attributes. It requires comprehensive and accurate product metadata, which is often lacking in Polish e-commerce platforms. Moreover, it struggles to recommend products outside the user's existing comfort zone, hindering serendipitous discoveries. For instance, if a user consistently purchases action novels, the system may only recommend other action novels, neglecting potential interest in related genres like thrillers or espionage.
Basic personalization through CRM and email marketing: This involves segmenting users based on demographic data and past purchase behavior to send targeted email campaigns and display personalized banners. However, this approach is often static and lacks real-time responsiveness. It relies on broad segmentation, failing to cater to individual preferences within those segments. For example, all female users aged 25-35 might receive promotions for fashion items, WebMiami80 content marketing even if they are primarily interested in electronics.
Generic retargeting advertising: This involves displaying ads for products the user has previously viewed, often across different websites. While effective in reminding users of abandoned carts, it can become intrusive and irrelevant if not properly managed. It fails to understand the user's intent behind browsing specific items and may display ads for products the user has already purchased elsewhere.
Search engine optimization (SEO) and basic search filters: While essential for visibility, SEO and basic search filters do not actively personalize the product discovery process. They merely help users find products they already know they are looking for. They don't proactively suggest alternative options or expand the user's awareness of available products.


These existing solutions fall short because they lack the ability to:


Dynamically adapt to real-time user behavior: Current systems typically rely on historical data, neglecting the immediate context of the user's browsing session.
Understand complex product relationships: They often treat products as isolated entities, failing to leverage the connections between them.
Proactively suggest relevant items without explicit search queries: They are primarily reactive, responding to user searches rather than anticipating their needs.
Overcome the cold start problem and handle long-tail products effectively: They struggle to provide personalized recommendations to new users or for niche items.
Integrate diverse data sources to create a holistic user profile: They often operate in silos, neglecting valuable data from social media, CRM, and other sources.


The Demonstrable Advance: Personalized Product Discovery Engine


The proposed advance is the development and implementation of a personalized product discovery engine that addresses the limitations of current solutions. This engine would be based on a combination of contextual bandit algorithms and knowledge graph integration, providing a significantly more dynamic, relevant, and proactive product discovery experience.


1. Contextual Bandit Algorithms: Real-Time Adaptation and Exploration


Contextual bandit algorithms are a type of reinforcement learning algorithm that allows the system to learn the optimal recommendation strategy based on the user's context. Unlike traditional machine learning algorithms that require large amounts of pre-labeled data, contextual bandits can learn in real-time by exploring different recommendations and observing the user's response.


Real-time learning: The algorithm learns from each user interaction, adjusting its recommendations based on the user's clicks, purchases, and other behaviors. This allows the system to adapt to changing user preferences and new product trends.
Exploration-exploitation trade-off: The algorithm balances the need to exploit its existing knowledge (recommending items that have worked well in the past) with the need to explore new recommendations (discovering potentially better items that the user may not have considered).
Contextual awareness: The algorithm takes into account the user's context, such as their location, device, time of day, browsing history, and current search query, to provide more relevant recommendations.
Personalized exploration: The algorithm can personalize the exploration strategy for each user, based on their risk tolerance and propensity to try new things. Some users may prefer to see a wider range of recommendations, while others may prefer to see more familiar items.


In the Polish e-commerce context, this translates to:


Dynamically adjusting product recommendations on the homepage based on the user's recent browsing behavior.
Suggesting relevant accessories or complementary products while the user is viewing a particular item.
Displaying personalized search results that prioritize items the user is most likely to be interested in, even if they don't perfectly match the search query.
Offering targeted promotions and discounts on items the user has shown interest in but has not yet purchased.


Example: A user browsing for hiking boots might be shown different recommendations based on their location. If they are located in the mountains, the system might recommend high-altitude boots with advanced ankle support. If they are located in a flat region, the system might recommend lighter-weight trail running shoes. Furthermore, the algorithm might explore offering them related items, like hiking socks or a water bottle, to assess their broader interest in hiking gear.


2. Knowledge Graph Integration: Understanding Product Relationships


Knowledge graphs are structured representations of information that capture the relationships between different entities. In the context of e-commerce, a knowledge graph can be used to represent the relationships between products, brands, categories, attributes, and user preferences.


Semantic understanding: The knowledge graph allows the system to understand the semantic meaning of products and their relationships to each other. This enables the system to make more intelligent recommendations, even when the user's search queries are ambiguous.
Product enrichment: The knowledge graph can be used to enrich product descriptions with additional information, such as alternative names, related categories, and user reviews.
Personalized navigation: The knowledge graph can be used to personalize the website navigation, highlighting categories and products that are most relevant to the user.
Serendipitous discovery: The knowledge graph can be used to suggest products that the user may not have explicitly searched for, but that are related to their interests in unexpected ways.


In the Polish e-commerce context, this translates to:


Recommending alternative products based on their semantic similarity to the user's search query. For example, if the user searches for "smartwatch," the system might also recommend fitness trackers or smart bracelets.
Suggesting complementary products based on their compatibility with the user's selected item. For example, if the user is purchasing a digital camera, the system might recommend a memory card or SEO na WordPress a camera bag.
Helping users discover new product categories based on their existing purchase history. For kanibalizacja słów kluczowych example, if the user has previously purchased books on Polish history, the system might recommend books on Polish culture or Polish cuisine.
Generating personalized product descriptions that highlight the features and benefits that are most relevant to the user.


Example: A user searching for "kawa" (coffee) might be shown recommendations not only for different brands and optymalizacja pod Core Web Vitals types of coffee beans, but also for related products like coffee grinders, espresso machines, and coffee cups. The knowledge graph would understand the relationships between these products and proactively suggest them to the user. It could also suggest different types of coffee based on the user's past purchases (e.g., if they previously bought Arabica, it might suggest a different brand of Arabica or old.remain.co.kr a blend).


3. Data Integration and User Profiling


To effectively leverage contextual bandit algorithms and knowledge graph integration, the personalized product discovery engine needs access to a comprehensive and up-to-date user profile. This profile should include data from various sources, such as:


Website browsing history: Pages viewed, products added to cart, search queries.
Purchase history: Products purchased, order dates, payment methods.
Demographic data: Age, gender, location, language.
Social media activity: Likes, shares, comments (with appropriate privacy considerations and user consent).
CRM data: Email interactions, customer service requests.
Mobile app usage: App activity, location data (with explicit user consent).


This data should be integrated and analyzed to create a holistic view of the user's interests, preferences, and needs. The user profile should be continuously updated based on the user's ongoing interactions with the e-commerce platform.


4. Implementation and Evaluation


The implementation of the personalized product discovery engine would involve the following steps:


Data collection and integration: Gathering data from various sources and integrating it into a central data warehouse.
Knowledge graph construction: Building a knowledge graph that represents the relationships between products, brands, categories, and user preferences. This requires manual curation and automated data extraction techniques.
Contextual bandit algorithm development: Implementing a contextual bandit algorithm that can learn from user interactions and adapt its recommendations in real-time.
System integration: Integrating the personalized product discovery engine into the existing e-commerce platform.
A/B testing: Conducting A/B tests to compare the performance of the personalized product discovery engine with the existing recommendation system.
Performance monitoring: Continuously monitoring the performance of the system and making adjustments as needed.


The success of the personalized product discovery engine would be evaluated based on the following metrics:


Click-through rate (CTR): The percentage of users who click on recommended products.
Conversion rate: The percentage of users who purchase recommended products.
Average order value (AOV): The average value of orders that include recommended products.
Revenue per visitor (RPV): The average revenue generated per visitor to the website.
User satisfaction: Measured through surveys and feedback forms.
Discovery of new products: Measurement of how often users purchase products they have not explicitly searched for but found through the personalized recommendations.


Advantages over Existing Solutions


The proposed personalized product discovery engine offers several advantages over existing solutions in the Polish e-commerce market:


Increased personalization: It provides a significantly more personalized experience by dynamically adapting to individual user behavior and understanding complex product relationships.
Improved relevance: It recommends more relevant products by considering the user's context and leveraging the knowledge graph.
Proactive discovery: It proactively suggests relevant items, helping users discover products they may not have otherwise found.
Cold start solution: Contextual bandit algorithms mitigate the cold start problem by exploring different recommendations and learning from each user interaction.
Enhanced user engagement: It increases user engagement by providing a more enjoyable and rewarding shopping experience.
Increased sales: It drives sales by recommending products that users are more likely to purchase.
Better product categorization and search relevance The knowledge graph enables the system to better understand and optymalizacja nagłówków categorize the products.


Challenges and Mitigation Strategies


Implementing a personalized product discovery engine also presents several challenges:


Data privacy: Ensuring compliance with data privacy regulations and protecting user data. Mitigation: Implementing robust data security measures and obtaining explicit user consent for data collection and usage.
Algorithm complexity: Developing and maintaining a complex machine learning algorithm. Mitigation: Hiring experienced data scientists and engineers and leveraging open-source machine learning libraries.
Scalability: Scaling the system to handle a large number of users and products. Mitigation: Using cloud-based infrastructure and optimizing the algorithm for pozycjonowanie lokalne stron internetowych performance.
Data quality: Ensuring the quality and accuracy of the data used to train the algorithm. Mitigation: Implementing data validation and cleaning processes.
Explainability: Understanding why the algorithm is making certain recommendations. Mitigation: Using explainable AI techniques to provide insights into the algorithm's decision-making process.
User trust: Gaining user trust in the personalized recommendations. Mitigation: Being transparent about how the system works and allowing users to control their data and preferences. Explainable AI techniques can help build trust.


Conclusion

➡️ Discount code: MIKOLAJ10

???? \"Creators ..."}]},"snippetHoverText":{"runs":[{"text":"From the video description"}]},"maxOneLine":true}],"inlinePlaybackEndpoint":{"clickTrackingParams":"CIACENwwGAUiEwj5v6bwqIWSAxVnNlQJHVa1Hy8yBnNlYXJjaFIdendpxJlrc3phbmllIHJ1Y2h1IG5hIHN0cm9uaWWaAQYIzwEQ9CTKAQSjO8E7","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026pp=YAHIAQGiBhUBX1ae4ztVVrjVcsC1wyn_HOd3LGo%3D","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","playerParams":"YAHIAQGiBhUBX1ae4ztVVrjVcsC1wyn_HOd3LGo%3D","playerExtraUrlParams":[{"key":"inline","value":"1"}],"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"expandableMetadata":{"expandableMetadataRenderer":{"header":{"collapsedTitle":{"runs":[{"text":"Wstęp: Rewolucja w tworzeniu stron z AI | Mój proces: Planowanie w Canva | Krok 1: Ustal cel strony (Strategia) | Krok 2: Struktura i sekcje (Gotowy Prompt) | Krok 3: Gdzie szukać inspiracji? (Landbook, Awwwards, Webflow) | Krok 4: Tworzenie sekcji Hero | Dlaczego Aura.build to gamechanger? (vs Lovable i Gemini) | Generowanie strony ze zrzutu ekranu (Image to Code) | Cennik narzędzi i darmowe alternatywy | Krok 5: Dodawanie kolejnych sekcji (Biblioteka Relume) | Edycja bez znajomości kodu (Sposób dla każdego) | Krok 6: Szlifowanie kodu z Gemini / Google AI Studio | Krok 7: Własna domena i hosting (Sponsor: Hostinger) | Jak wgrać stronę na serwer? (Instrukcja krok po kroku) | Finał: Tak wygląda gotowa strona z AI | Zaproszenie do Stowarzyszenia Twórców"}]},"collapsedThumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_333.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLB7WHEfTJr1jhDJIuWIEPYnPqeF4Q","width":336,"height":188}]},"collapsedLabel":{"runs":[{"text":"16"},{"text":" chapters"}]},"expandedTitle":{"runs":[{"text":"16"},{"text":" chapters in this video"}]},"showLeadingCollapsedLabel":true},"expandedContent":{"horizontalCardListRenderer":{"cards":[{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Wstęp: Rewolucja w tworzeniu stron z AI"}]},"timeDescription":{"runs":[{"text":"0:00"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_333.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLB7WHEfTJr1jhDJIuWIEPYnPqeF4Q","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CJYCENDQBhgAIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CJYCENDQBhgAIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Mój proces: Planowanie w Canva"}]},"timeDescription":{"runs":[{"text":"0:46"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_47133.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLBo6wOBf4xDEJGOi9YnPnd6uz7a_Q","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CJUCENDQBhgBIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=46s\u0026pp=0gcJCfMAdtSAhXgk","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":46,"playerParams":"0gcJCfMAdtSAhXgk","watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=46\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CJUCENDQBhgBIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Krok 1: Ustal cel strony (Strategia)"}]},"timeDescription":{"runs":[{"text":"0:53"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_54833.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLAUY0GTruJcGodZhevZTuHn_R_cNA","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CJQCENDQBhgCIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=53s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":53,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=53\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CJQCENDQBhgCIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Krok 2: Struktura i sekcje (Gotowy Prompt)"}]},"timeDescription":{"runs":[{"text":"1:13"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_74066.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLA-qyFh3nEdOBGFgst79MMG1URtkg","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CJMCENDQBhgDIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=73s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":73,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=73\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CJMCENDQBhgDIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Krok 3: Gdzie szukać inspiracji? (Landbook, Awwwards, Webflow)"}]},"timeDescription":{"runs":[{"text":"3:17"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_205800.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLDnFX6J2t8hBLCtcVjakruhMbSxVg","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CJICENDQBhgEIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=197s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":197,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=197\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CJICENDQBhgEIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Krok 4: Tworzenie sekcji Hero"}]},"timeDescription":{"runs":[{"text":"5:33"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_340200.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLChOZKMjKFafQbls69h_CfeBF9jTg","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CJECENDQBhgFIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=333s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":333,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=333\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CJECENDQBhgFIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Dlaczego Aura.build to gamechanger? (vs Lovable i Gemini)"}]},"timeDescription":{"runs":[{"text":"5:58"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_364100.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLBFbaGv22-u_DsxG6E9Bp1DU8EFGA","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CJACENDQBhgGIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=358s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":358,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=358\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CJACENDQBhgGIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Generowanie strony ze zrzutu ekranu (Image to Code)"}]},"timeDescription":{"runs":[{"text":"8:31"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_517733.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLBmhghslxE0G_0v9C_ha5vpkut3nQ","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CI8CENDQBhgHIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=511s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":511,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=511\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CI8CENDQBhgHIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Cennik narzędzi i darmowe alternatywy"}]},"timeDescription":{"runs":[{"text":"10:18"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_627200.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLACHOJndx7oPbbzuOOeVpW_ctvyyg","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CI4CENDQBhgIIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=618s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":618,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=618\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CI4CENDQBhgIIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Krok 5: Dodawanie kolejnych sekcji (Biblioteka Relume)"}]},"timeDescription":{"runs":[{"text":"12:40"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_775133.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLBcux_qaVGhczc9sPvP047-gEPGFQ","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CI0CENDQBhgJIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=760s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":760,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=760\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CI0CENDQBhgJIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Edycja bez znajomości kodu (Sposób dla każdego)"}]},"timeDescription":{"runs":[{"text":"15:13"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_917000.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLDKRYGjB9M8vNXmYMhbCdUhNr3t1Q","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CIwCENDQBhgKIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=913s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":913,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=913\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CIwCENDQBhgKIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Krok 6: Szlifowanie kodu z Gemini / Google AI Studio"}]},"timeDescription":{"runs":[{"text":"16:26"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_986100.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLCmL0cH9zVsMMK23b5hsdd-Vzo0Ew","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CIsCENDQBhgLIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=986s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":986,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=986\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CIsCENDQBhgLIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Krok 7: Własna domena i hosting (Sponsor: Hostinger)"}]},"timeDescription":{"runs":[{"text":"16:51"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_1025166.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLDn7kKMXy7bXJyrpVBPc3JaQxGR6g","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CIoCENDQBhgMIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=1011s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":1011,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=1011\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CIoCENDQBhgMIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Jak wgrać stronę na serwer? (Instrukcja krok po kroku)"}]},"timeDescription":{"runs":[{"text":"17:45"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_1067066.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLA0xBicF7Lnr5HUvyFxk2dzJWlvYw","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CIkCENDQBhgNIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=1065s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":1065,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=1065\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CIkCENDQBhgNIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Finał: Tak wygląda gotowa strona z AI"}]},"timeDescription":{"runs":[{"text":"18:29"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_1114366.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLAYLI0dOE2_6RIMfEGHPoIJOQbPUQ","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CIgCENDQBhgOIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=1109s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":1109,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=1109\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CIgCENDQBhgOIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}},{"macroMarkersListItemRenderer":{"title":{"runs":[{"text":"Zaproszenie do Stowarzyszenia Twórców"}]},"timeDescription":{"runs":[{"text":"19:19"}]},"thumbnail":{"thumbnails":[{"url":"https://www.youtube.com/watch?v=c2eFYvcCgaM/hqdefault_1189000.jpg?sqp=-oaymwEnCNACELwBSFryq4qpAxkIARUAAIhCGAHYAQHiAQoIGBACGAY4AUAB\u0026rs=AOn4CLChGv2irwuPwKcAsEFAhRrW_ne2Iw","width":336,"height":188}]},"onTap":{"clickTrackingParams":"CIcCENDQBhgPIhMI-b-m8KiFkgMVZzZUCR1WtR8vygEEozvBOw==","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=c2eFYvcCgaM\u0026t=1159s","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"c2eFYvcCgaM","startTimeSeconds":1159,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-nco-c33ls.googlevideo.com/initplayback?source=youtube\u0026oeis=1\u0026c=WEB\u0026oad=3200\u0026ovd=3200\u0026oaad=11000\u0026oavd=11000\u0026ocs=700\u0026oewis=1\u0026oputc=1\u0026ofpcc=1\u0026msp=1\u0026odepv=1\u0026id=73678562f70281a3\u0026ip=184.22.64.88\u0026osts=1159\u0026initcwndbps=3296250\u0026mt=1768197188\u0026oweuc="}}}}},"trackingParams":"CIcCENDQBhgPIhMI-b-m8KiFkgMVZzZUCR1WtR8v","layout":"MACRO_MARKERS_LIST_ITEM_RENDERER_LAYOUT_VERTICAL","isHighlighted":false}}],"trackingParams":"CIQCEJFaIhMI-b-m8KiFkgMVZzZUCR1WtR8v","style":{"type":"HORIZONTAL_CARD_LIST_STYLE_TYPE_ENGAGEMENT_PANEL_SECTION"},"previousButton":{"buttonRenderer":{"style":"STYLE_DEFAULT","size":"SIZE_DEFAULT","isDisabled":false,"icon":{"iconType":"CHEVRON_LEFT"},"trackingParams":"CIYCEPBbIhMI-b-m8KiFkgMVZzZUCR1WtR8v"}},"nextButton":{"buttonRenderer":{"style":"STYLE_DEFAULT","size":"SIZE_DEFAULT","isDisabled":false,"icon":{"iconType":"CHEVRON_RIGHT"},"trackingParams":"CIUCEPBbIhMI-b-m8KiFkgMVZzZUCR1WtR8v"}}}},"expandButton":{"buttonRenderer":{"style":"STYLE_DEFAULT","size":"SIZE_DEFAULT","isDisabled":false,"icon":{"iconType":"EXPAND_MORE"},"trackingParams":"CIMCEPBbIhMI-b-m8KiFkgMVZzZUCR1WtR8v","accessibilityData":{"accessibilityData":{"label":"More"}}}},"collapseButton":{"buttonRenderer":{"style":"STYLE_DEFAULT","size":"SIZE_DEFAULT","isDisabled":false,"icon":{"iconType":"EXPAND_LESS"},"trackingParams":"CIICEPBbIhMI-b-m8KiFkgMVZzZUCR1WtR8v","accessibilityData":{"accessibilityData":{"label":"Less"}}}},"trackingParams":"CIECEO_DByITCPm_pvCohZIDFWc2VAkdVrUfLw==","colorData":{"lightColorPalette":{"section1Color":4294704127,"section2Color":4294046200,"section3Color":4293388274,"primaryTitleColor":4279440153,"secondaryTitleColor":4284308858,"iconActivatedColor":4282664025,"iconInactiveColor":4288059068,"section4Color":4292730347,"iconDisabledColor":4073310688},"darkColorPalette":{"section1Color":4281348159,"section2Color":4280756019,"section3Color":4280098086,"primaryTitleColor":4293256703,"secondaryTitleColor":4288914380,"iconActivatedColor":4293256703,"iconInactiveColor":4286348443,"section4Color":4279440153,"iconDisabledColor":4064954976},"vibrantColorPalette":{"section1Color":4283321957,"section2Color":4282664025,"section3Color":4282006092,"primaryTitleColor":4293256703,"secondaryTitleColor":4290756591,"iconActivatedColor":4293256703,"iconInactiveColor":4285887897,"section4Color":4281348159,"iconDisabledColor":4063902284},"saturatedColorPalettes":{"lightThemePalette":{"baseBackground":4294440951,"raisedBackground":4294440951,"additiveBackground":562530183,"textPrimary":4280295456,"textSecondary":4283716692,"outline":858796080,"keyLight":4291085508,"collectionStack":4289111718,"invertedBackground":4283716692,"textPrimaryInverse":4294440951,"textDisabled":2133864496,"dropShadow":428312455,"cardOutline":176654215,"overlayBackground":3424657440,"overlayTextPrimary":4294440951},"darkThemePalette":{"baseBackground":4279176975,"raisedBackground":4280295456,"additiveBackground":730302343,"textPrimary":4293783021,"textSecondary":4291085508,"outline":1071570654,"keyLight":4282532418,"collectionStack":4283716692,"invertedBackground":4289111718,"textPrimaryInverse":4279176975,"textDisabled":2145312478,"dropShadow":428312455,"cardOutline":176654215,"overlayBackground":3424657440,"overlayTextPrimary":4294440951}}},"useCustomColors":true,"loggingDirectives":{"trackingParams":"CIECEO_DByITCPm_pvCohZIDFWc2VAkdVrUfLw==","visibility":{"types":"12"}}}},"searchVideoResultEntityKey":"EgtjMmVGWXZjQ2dhTSDnAigB","avatar":{"decoratedAvatarViewModel":{"avatar":{"avatarViewModel":{"image":{"sources":[{"url":"https://yt3.ggpht.com/R_Y-MCxvh28V4V18IxTnUdRnY504jnFw7LPNDI0cmo4ixupgrqtgXFauqUE-KvL2Dk0dNFxs=s68-c-k-c0x00ffffff-no-rj","width":68,"height":68}]},"avatarImageSize":"AVATAR_SIZE_M"}},"a11yLabel":"Go to channel Mikołaj Abramczuk","rendererContext":{"commandContext":{"onTap":{"innertubeCommand":{"clickTrackingParams":"CIACENwwGAUiEwj5v6bwqIWSAxVnNlQJHVa1Hy_KAQSjO8E7","commandMetadata":{"webCommandMetadata":{"url":"/@MikolajAbramczuk","webPageType":"WEB_PAGE_TYPE_CHANNEL","rootVe":3611,"apiUrl":"/youtubei/v1/browse"}},"browseEndpoint":{"browseId":"UCOW67Wpaa7elCGoLAB9HTrw","canonicalBaseUrl":"/@MikolajAbramczuk"}}}}}}}}},{" frameborder="0" allowfullscreen title="1 month ago (c) by youtube.com" style="float:right;padding:10px 0px 10px 10px;border:0px;">

The implementation of a personalized product discovery engine based on contextual bandit algorithms and knowledge graph integration represents a significant advancement for story119.com Polish e-commerce. This approach overcomes the limitations of current solutions by providing a more dynamic, relevant, and proactive product discovery experience. By addressing the challenges and leveraging the advantages of this technology, Polish e-commerce platforms can significantly improve user engagement, drive sales, and gain a competitive edge in the rapidly evolving online marketplace. This is not just an incremental improvement; it represents a quantum leap in the ability to connect Polish consumers with the products they need and desire. Furthermore, successful implementation could lead to a significant increase in overall customer satisfaction and brand loyalty within the Polish e-commerce sector. By focusing on user experience and providing a highly personalized shopping journey, Polish businesses can foster a thriving online ecosystem.



Should you beloved this short article as well as you would like to get guidance regarding CTR w wynikach lokalne wyniki wyszukiwania [https://peatix.com/] i implore you to check out the web page.

댓글목록

등록된 댓글이 없습니다.


회사명 정우농장 주소 경기도 파주시 적성면 장현리 166번지(도로명 주소 : 경기도 파주시 적성면 장뜰안길 199번지) 대표 안영선
사업자 등록번호 141-03-62292 전화 031-958-4326 통신판매업신고번호 2015-6365 호 개인정보관리책임자 안영선 E-mail okok6334@naver.com
Copyright © 2001-2022 정우농장. All Rights Reserved.

상단으로